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Abstract

GdfidL is a code that computes resonant electromagnetic
fields and time dependent fields. It uses the Finite Differ-
ence approximations of the curl operators as introduced by
Yee in 1966. GdfidL uses generalized diagonal fillings for
the discretization of the material distribution. The new al-
gorithm allows more than 72 different types of material fill-
ing for each cell, whereas the common diagonal filling only
allows 7 types. With the improved material filling, the dis-
cretization error is reduced by a factor of ten. The improved
meshing is implemented both in the resonant solver and the
time domain solver. The implementation of the generalized
diagonal fillings is described. Computed frequencies for a
sphere are given to show the reduction in discretization er-
ror.

For resonant fields, GdfidL allows periodic boundary
conditions in all three cartesian directions simultaneously.
It is shown that, although periodic boundary conditions
lead to an eigenvalue problem with a complex matrix, the
matrix iterations can be carried out mostly in real arith-
metic. As an example for the application of periodic bound-
ary conditions, the dispersion relation of some artificial
crystal is computed.

1 INTRODUCTION

The Finite Difference algorithm for electromagnetic fields
replaces MAXWELL ’s curl equations by difference equa-
tions. The coefficients of the difference equations depend
both on the grid-spacing and on the material parameters.

Of course, generally the solution of the difference equa-
tions differ from the solution of the differential equations.
We have at least two sources of error:

� The error introduced by the approximation of the dif-
ferential equation by a difference equation. For a
homogeneous mesh, this error is proportional to the
square of the mesh spacing.

� The error due to the approximation of the material dis-
tribution.

In order to achieve a good result from our field computa-
tions, we have to keep both errors low. The most economi-
cal case is when both errors are of about the same size.

We describe a procedure that decreases the error due to
the approximation of the material filling down to a level
comparable to the error due to the difference equation itself.
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2 IMPROVED MESH FILLING

The coefficients of the difference equations do depend on
the material parameters. The simplest finite difference pro-
grams assume constant material parameters in each cell of
the grid. This is the “staircase” approximation. A better
approximation of the material fillings can be achieved with
prismatic cells, as e.g. the MAFIA [5] group of codes uses
them. The filling with prismatic cells can be generalized.
Since the finite difference coefficients for a field component
depend only on the material in the immediate vicinity of
the edge where the component is defined on, one can work
easily with a mesh-filling that is constructed by a boolean
combination of prismatic fillings. Figure 1 shows some of
the possible discretized material distributions. A similiar
mesh filling is mentioned in [3].
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Figure 1: Some examples of the possible inhomogeneous
fillings of a cell. Upper left: a prism. lower left: Inter-
section of two prisms. Upper right: Intersection of three
prisms. lower right: Union of “upper left” and “lower left”.
The prism in the upper left can be oriented in 2 x 3 different
kinds in a cell, the other three material fillings are possible
in 4 x 3 x 2 different orientations.

2.1 Effect of the new meshing

In order to show the effect of the generalized prismatic fill-
ing, figure 2 shows the computed resonance frequency in a
sphere as a function of the mesh-spacing. For comparison,
the results for prismatic filling and the optimal quadratic
behaviour is plotted also. The error with the improved fill-
ing is about as low as the optimal quadratic behaviour. If
the boundary conditions, ie. the materials would have been
discretized perfectly, the result would not be much better.
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Figure 2: Error in the computed frequency of the lowest
mode in a sphere. Above: absolute values in a double log-
arithmic scale, below: signed values in single logarithmic
scale.

2.2 Difference equations

The Finite Difference algorithm substitutes MAXWELL ’s
curl equations by difference equations for the line integralsR
~E � d~s and

R
~H � d~s along discrete edges�~s.

The derivation of our difference coefficients is strongly
influenced by the works of Weiland, who calls the pro-
cedure “Finite Integration Theory” [4]. The derivation of
the finite difference coefficients starts from FARADAY s and
AMPEREs laws in lossfree regions:

�
d

dt

Z
A

� ~H � d ~A =

I
�A

~E � d~s (1)

d

dt

Z
A0

" ~E � d ~A0 =

I
�A0

~H � d~s0 (2)

In the Finite Integration Algorithm, the areas we integrate
over are the facesA of the primary grid or the facesA0 of
the dual grid. This is the same grid as it was introduced
by Yee [1]. When the material boundaries are just tangen-
tial or normal to these faces, we can assume average field
strengths over these faces: We extract the field strengths
out of the surface integrals:

�

Z
A

�dA
d

dt
~H � ~nA �

I
�A

~E � d~s (3)

Z
A0

"dA0

d

dt
~E � ~nA0 �

I
�A0

~H � d~s0 (4)

The line integrals on the right sides of the above equations
are sums of four line integrals along the edges of the pri-
mary and dual grid, respectively. In order to have such line
integrals on the left sides too, we now integrate these equa-
tions over the edges of the primary or dual grid.

�
d

dt

Z
~H � d~s0 �

Z H
�A

~E � d~sR
A
�dA

ds (5)

d

dt

Z
~E � d~s �

Z H
�A0

~H � d~s0R
A0
"dA0

ds (6)

Assuming that the contour integrals on the right sides are
spatially constant, we arrive at:

�
d

dt

Z
~H � d~s0 �

Z
1R

A
�dA

ds

I
�A

~E � d~s (7)

d

dt

Z
~E � d~s �

Z
1R

A0
"dA0

ds

I
�A0

~H � d~s0 (8)

Our unknowns are now the line integrals of the fields along
the edges of the primary and dual cells. Withe �

R
~E � d~s

andh �
R
~H �d~s, we can drop the approximation signs and

write

�
d

dt
h =

Z
1R

A
�dA

ds0 (e1 + e2 � e3 � e4) (9)

d

dt
e =

Z
1R

A0
"dA0

ds (h1 + h2 � h3 � h4) (10)

The values
R

1R
A0

"dA0

ds and
R

1R
A
�dA

ds0 are the coeffi-

cients of the difference equations. The valueshi and ei
are the line integrals of the field strengths surrounding the
component on the left side of the equations.

2.3 Computing the FD-Coefficients

GdfidL further approximates the FD-coefficients by assum-
ing for the coefficients

R
1R

A0
"dA0

ds that the value
R
A0
"dA0

is constant over the integration path�s. Therefore GdfidL

uses an FD-coefficient of

R
dsR

A0
"dA0

. The area where the per-

mittivity has to be integrated over is the vicinity of an edge
of the primary grid. Four cells belong to this vicinity. In
the case of the implemented generalized diagonal fillings,
each cell can have up to two different materials. Figure 3
illustrates the case that all material boundaries in the four
cells involved also touch the edge. The integral

R
A0
"dA0 in

the FD-coefficient now isR
A0
"dA0 = 1

8

�
("1;1 + "2;1)A1 + ("1;2 + "2;2)A2

+("1;3 + "2;3)A3 + ("1;4 + "2;4)A4

�
�

(11)
The value

R
ds of course is the length of the edge of the

primary grid.



Figure 3: The FD-coefficients to compute an electric com-
ponent from the surrounding magnetic components are de-
pendent on up to eight different permittivities. The marker
in the above picture indicates the location of the electric
component. The areasA1; A2; A3; A4 are the areas of faces
of the primary grid cells touching the edge where the elec-
tric component is defined on. The thick lines indicate edges
of the primary grid, the thin lines indicate edges of the dual
grid.

To evaluate the coefficient of a magnetic componentR
1R

A
�dA

ds0, we integrate the permeability in the vicin-

ity of a dual edge. Since a dual edge is the connection
of the two centers of two primary cells, the dual edge lies
within two primary cells. GdfidL assumes that in each pri-
mary cell the integral

R
A
�dA does not change along the

part of the dual edge inside the cell. Since in each pri-
mary cell up to two different materials may be present, the
FD-coefficient for a magnetic component then may be cal-
culated as:

R
1R

A
�dA

ds0 = 1
2

�
�1

(�1;1+�2;1)A1=2

+ �2

(�1;2+�2;2)A2=2

�
9=
; (12)

Here the values�1;1; �2;1 and�1;2; �2;2 are the material
parameters in the two primary cells involved, and the values
A1 = A2 are the areas of their faces.

Figure 4 illustrates the material distribution in one of the
two primary cells involved. Figure 5 illustrates a common
case that a magnetic field component is tangential to a ma-
terial boundary.

3 EIGENVALUE COMPUTATION

Equations (9) and (10) may be written as matrix equations
for arithmetic vectors~e and~h which hold the unknown in-
tegrated electric and magnetic field strengths over the pri-
mary and dual edges:

�
d

dt
~h = (C)e~e (13)

d

dt
~e = (C)h~h (14)

Figure 4: The marker in the above picture indicates the lo-
cation of the magnetic component. The FD-coefficients to
compute a magnetic component from the surrounding elec-
tric components are dependent of up to four different per-
meabilities. Two of the permeabilities involved are the per-
meabilities in the shown cell, the other two permeabilities
belong to the cell above the paper plane. The thick lines
indicate edges of the primary grid, the thin lines indicate
edges of the dual grid.
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Figure 5: A magnetic field component touching some ma-
terial boundaries. To evaluate the FD-coefficient for this
component, one has to evaluate the effectice permeability
along the path where the component is defined on. The Fi-
nite Difference coefficient forthis component is the same
in both shown cases.

Here the elements of the matrix(C)e are�
R

1R
A
�dA

ds0

and the elements of the matrix(C)h are�
R

1R
A0

"dA0

ds.

The matrices are extremely sparse, there are only up to 4
nonzero entries per row. If we would want to perform a
FDTD computation, then we would perform a FDTD-step
with these matrices as:

~hn = ~hn�1 ��t(C)e~en�1=2 (15)

~en+1=2 = ~en�1=2 +�t(C)h~hn (16)

Since we want to compute resonant fields, we can sub-
stitute j! for d

dt
. Substituting the~h of equation (13) into

(14) yields a standard arithmetic eigenvalue problem:

(C)h(C)e~e = !2~e (17)

If the boundary conditions at the outer boundaries of the
computational volume are simple ones, ie. if the outer
boundaries can be assumed perfectly electric conducting
or perfectly magnetic conducting, then the matrix of the
eigenvalue problem(C)h(C)e is real.



If we want to compute eigenvalues with periodic bound-
ary conditions applied at the outer surface of our compu-
tational volume, then some of the matrix elements become
complex, since the periodic boundary conditions specify
that eg. the electric field at a lower boundary has to be the
same as the field at the corresponding upper boundary, mul-
tiplied with a complex factore�j'.

GdfidL uses subspace iteration as implemented in an al-
gorithm of Tückmantel [2] to search for the lowest nonzero
eigenvalues of (17). This algorithm needs some hundred to
some thousand iterations of the form:

~yi+1 = (C)h(C)e~yi � 
i~yi (18)

where the
i are the zeroes of some polynomial. Since the
algorithm only requires these matrix times vector opera-
tions, and not the matrix itself, it is not necessary to really
construct and store the matrix.

For periodic boundary conditions, GdfidL implements
the matrix times vector operation (18) in a four step pro-
cess, without performing a complex matrix times vector
operation. Two of these steps are very similiar to the oper-
ations needed to perform a single time step in a FDTD al-
gorithm. In order to avoid the computation with a complex
matrix, GdfidL extends the grid such, that above the last
gridplane of the computational volume an auxiliary plane
with the same material distribution as the very first plane is
placed. Below the lowest plane of the computational vol-
ume, an auxiliary plane with the same material distribution
as the last plane is placed. This is done for all cartesian di-
rections where periodic boundary conditions are to be en-
forced.

In the first step, a complex auxiliary vector~x is com-
puted.

~x <= (C 0)e~yi (19)

Here the entries of the real matrix(C 0)e are the real FD-
coefficients�

R
1R
�dA

ds in the artificially enlarged vol-

ume. If the vector~yi would contain the integrated elec-
tric field strengths of a resonant field with frequency!n,
then this auxiliary vector~x would be the integrated mag-
netic field strengths ofj!n ~H . This step is similiar to the
computation of the H-field update in an FDTD-algorithm.
To compute this auxiliary vector, it is not needed to store
the matrix(C 0)e, it is only needed to be able to perform a
H-field update.

In the second step, the periodic boundary conditions for
the H-fields are applied to the complex auxiliary vector~x.
This is: The components of~x that lie at the lower bound-
aries of the computational volume are multiplied by a com-
plex factor = exp(j') and the result is copied to the
corresponding components at the upper planes. Here' is
the wanted phase shift for the cartesian direction. Figure
6 illustrates this procedure for a 2-dimensional grid, when
periodic boundary conditions in a single cartesian direction
are to be enforced.

In the third step, the vector update

~yi+1 <= (C 0)h~x� 
i~yi (20)

Figure 6: The periodic boundary conditions for the mag-
netic field are enforced by taking the values at the lower
plane, multiplying them by a complex factor and assign-
ing the result to the magnetic field components at the upper
plane. The thick lines indicate edges of the primary grid,
the thin lines indicate edges of the dual grid.

is performed. Here the entries of the real matrix(C 0)h are
the real FD-coefficients�

R
1R
"dA0

ds in the artificially en-

larged volume. This step is similiar to the E-field update in
a FDTD-algorithm. Again, the matrix(C 0)h does not need
to be explicitly available.

In the fourth step, the periodic boundary conditions for
the electric field are applied to the vector~yi+1. This is:
The components of~yi+1 that lie at the upper boundaries
of the computational volumes are multiplied by a complex
factor = exp(�j') and the results are copied to the cor-
responding components at the lower planes. Again' is
the wanted phase shift for the cartesian direction. Figure
7 illustrates this procedure for a 2-dimensional grid, when
periodic boundary conditions in a single cartesian direction
are to be enforced.

Figure 7: The periodic boundary conditions for the electric
field are enforced by taking the values at the upper plane,
multiplying them by a complex factor and assigning the
result to the electric field components at the lower plane.
The thick lines indicate edges of the primary grid, the thin
lines indicate edges of the dual grid.



3.1 Example for Periodic Boundary Conditions

The periodic boundary conditions are applied to compute
the dispersion relation in a crystal made of a rectangular
array of conducting spheres connected by round rods. Fig-
ure 8 shows an elemental cell of this array. This geometry
also is a nice example for the good material approximation
that can be achieved with the generalized diagonal fillings.
Figure 9 shows the computed frequencies as a function of
the wave-vector~k.

Figure 8: The elemental cell of a 3D array of perfect con-
ducting spheres, connected by round conducting rods. The
lattice constanta is the same in all three directions, the
radius of the spheres is 0.375a, the radius of the rods is
a=10. The spheres are located at(x; y; z) = (la;ma; na),
(l;m; n 2 � � � � 2;�1; 0; 1; 2; 3 � � �). The shown field is the
real part of the fundamental mode with~k = (1; 1; 1) �
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Figure 9: The band structure for the first few modes in the
3D array.

4 CONCLUSION

An improved mesh filling has been described that reduces
the frequency error by a factor of ten as compared to a
prismatic filling. The described mesh filling can be used
both for time domain computations and eigenvalue com-
putations. The procedure to evaluate the Finite Difference
coefficients with this material approximation has been de-
scribed in detail.

Periodic boundary conditions for all three cartesian di-
rections simultaneously can be applied to eigenvalue prob-
lems without having to build a complex matrix. Instead
only procedures similiar to the ones needed to perform a
FDTD step are needed.
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